O72

A comparison of the use of PRP Versus Hypertonic glucose in the treatment of physiotherapy resistant sacroiliac joint Incompetence

J. Saunders 1,*, M. Cusi 2, E. van der Wall 3, L. Hackett 2

1. Sydney Sportsmed Specialists, Sydney, Australia
2. University of Sydney, Sydney, Australia
3. Orthosports, Sydney, Australia
4. UMC Utrecht, Utrecht, The Netherlands

Introduction: The sacroiliac joint (SIJ) can become dysfunctional through trauma and/or pregnancy. The mechanism involves direct or repetitive microtrauma to the buttocks/lower back. Treatment with specialised physiotherapy alleviates the problems in ~80% of cases. The remainder may respond to prolotherapy (hypertonic glucose injections into the dorsal intra-osseous ligament (DIOL) after multiple injections. We hypothesised that the response may be more rapid with injection of platelet enriched plasma (PRP) into the DIOL under ultrasound guidance.

Materials and methods: Following Ethics approval a study was undertaken to compare the efficacy of PRP injections Vs Standard prolotherapy. A group of 39 patients (32F, 7M, Age range: 18–70 yrs) was studied and the results compared to the control group who had received hypertonic glucose injections. All patients were assessed clinically at baseline, 3 and 12 months. Outcome measures included VAS, Roland-Morris questionnaire and Quebec Back Pain inventory, as well as clinical tests of SIJ incompetence.

Results: The outcome measures of change in pain scores, improvement in function between the groups was superior for the PRP group. All PRP patients experiencing significant improvement in pain score and function. The number of injections required was less for the PRP group (mean of 1.6) than the controls (mean 3.0).

Discussion/conclusion: PRP is a viable alternative to hypertonic dextrose injections into the DIOL in patients who have failed physiotherapy for SIJ incompetence. It is better tolerated as less injections are required and avoids radiation exposure in a relatively young group of patients.

https://doi.org/10.1016/j.jsams.2018.09.087

O74

Use of the King-Devick test and Brain Gauge for the management of concussion

Doug King 1, 2, With the collaboration of P. Hume, C. Cummins, M. Tommerdahl, A. Pearce, T. Clark, J. McGeown

1. School of Science and Technology, University of New England, Armidale, NSW, Australia
2. Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand

Although there is an increasing body of evidence in relationship to sports-related concussion, these injuries do occur outside of the sporting field. For example, in New Zealand, over a five-year period, there was an average of one ACC injury claim lodged every 88 min for a sport-related traumatic brain injury costing a total of $83 million NZ dollars. When including all other traumatic brain injuries, over the same reporting period, there was an average of one ACC injury claim lodged every 26 min costing a total of $1.4 billion NZ dollars.

Recovery from these injuries are difficult to diagnose and often difficult to track. Should a person receive a second concussion, while still recovering, the injury can be much more serious, if not fatal. As such, during the period between concussion and full recovery, it is critical that the person not become reinjured. In the initial period, concussions can have adverse effects on cognitive function, balance and have a diverse number, and severity of symptoms. There is an increasing body of evidence reporting that balance and cognitive deficits, and the symptoms of a concussion will return to normal within 10 days for much of the population. However, for a approximately 8% of people (based on Asis Sports Medicine clinic and ACC data in New Zealand), this recovery can take longer than 10 days before return to normal activities.

It has been reported that although people may have clinically recovered from a concussion (i.e. no signs or symptoms), some may not have physiologically recovered (e.g. cerebral blood flow, cortical excitability). The period of physiological recovery may outlast clinical recovery time, but the duration of this is unknown. It has been reported that for some people abnormalities that occur as a result of a concussion can remain for up to 45 days post injury despite being clinically cleared to return to their normal activities.